P3321 [SDOI2015]序列统计

给定整数 $x$,求所有可以生成出的数列,长度为$n$,且满足数列中所有数的乘积 $\mod m$ 的值等于 $x$ 的不同的数列的有多少个。

如果是加法没有$\%$就是$S$卷起来$n次$。
$f[i][j]$,表示$i$个元素乘积$\mod m=x$的方案数

为了将变成卷积的形式需要将乘法变成加法,,取个$log$即可,但如何处理$\mod m$,就需要知道$log_p x\%m$

假设$=i$

此时需要$p^i\%m\rightarrow i$一一对应,取原根即可。$g^1….g^{m-1},或者g^0….g^{m-2}$

转换完之后$f[1]$卷上$n$次,多项式快速幂。

  • 本题中$0$无意义,就不存在$\mod m=0$的情况,$g^0与g^{m-1}$都是$1$,为了保证一一对应$log_g 1\%m=1$。
  • 每次NNT需要吧多余的项加到$\%{m-1},g^i=g^{i+m-1}$上,如果取$g^{m-1}$,会有些麻烦。
  • 注意数组清空
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165


#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 6e4 + 10;
const int mod = 1004535809;

int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int qpow(int a, int p, int mod)
{
int base = 1;
while (p)
{
if (p & 1)
base = 1ll * base * a % mod;
a = 1ll * a * a % mod;
p >>= 1;
}
return base;
}
int GetG(int x)
{
int q[N];
int tot = 0, tp = x - 1;
for (int i = 2; i * i <= tp; i++)
{ //这里是i * i
if (!(tp % i))
{
q[++tot] = i;
while (!(tp % i))
tp /= i;
}
}
if (tp > 1)
q[++tot] = tp;
for (int i = 2, j; i <= x - 1; i++)
{
for (j = 1; j <= tot; j++)
if (qpow(i, (x - 1) / q[j], x) == 1)
break;
if (j == tot + 1)
return i;
}
}
int inc(int x, int y, int mo)
{
if (x + y >= mo)
return (x + y - mo);
else
return (x + y);
}

int del(int x, int y, int mo)
{
if (x - y < 0)
return (x - y + mo);
else
return (x - y);
}

const int P = 1004535809, gi = 3;
const double pi = acos(-1.0);
int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y, P);
A[i + j + l] = del(x, y, P);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}
int A[N], B[N], res[N];
void NTTX(int *a, int n, int *b, int m, int *ans, int mod_x)
{
int ML = 1, bit = 0;
while (ML < n + m)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
for (int i = 0; i <= ML; i++)
A[i] = a[i];
for (int i = 0; i <= ML; i++)
B[i] = b[i];
NTT(A, ML, 1);
NTT(B, ML, 1);
for (int i = 0; i < ML; i++)
A[i] = 1ll * A[i] * B[i] % P;
NTT(A, ML, -1);
for (int i = 0; i < n; i++)
res[i] = (A[i] + A[i + n]) % mod;

for (int i = 0; i < n; i++)
ans[i] = res[i];
}
int mp[N];
void init(int m)
{
int gg = GetG(m);
int tmp = 1;
for (int i = 0; i < m - 1; i++)
{
mp[tmp] = i;
tmp = 1ll * tmp * gg % m;
}
}
int ans[N], a[N];
int main()
{
int n = read(), m = read(), x = read(), s = read();
init(m);
for (int i = 1; i <= s; i++)
{
int p = read();
if (p)
a[mp[p]]++;
}
// NTTX(a, m - 1, a, m - 1, a, m - 1);
// NTTX(a, m - 1, a, m - 1, a, m - 1);
// for (int i = 0; i <= 10; i++)
// cout << a[i] << " ";
ans[mp[1]] = 1;
while (n)
{
if (n & 1)
NTTX(ans, m - 1, a, m - 1, ans, m - 1);
NTTX(a, m - 1, a, m - 1, a, m - 1);
n >>= 1;
}

printf("%d\n", ans[mp[x]]);
}