P4238 多项式求逆

$f(x)\times g(x)\equiv1\mod x^n$

多项式求逆。

首先$(1+x+x^2)$的逆是$(1-x)$,满足$a_0=1,a_{i\leq n}=0$

$n=1$时即为逆元$\frac{1}{a_0}$,显然$n=3$也适用与$n=2$。

考虑已经知道$g_{n/2}(x)\times f(x)\equiv1\mod x^{\frac{n}{2}}$

$g_{n/2}(x)-g_n(x),a_{i\leq \frac{n}{2}}=0$,卷上自己必定都是$0$。

同乘$f(x)$

  • $n/2$向上取整,保证了都会满足。反正多了无所谓。
  • 每次$NTT$,只保留$x_{i\leq n}$的项数。
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 1e6 + 10;
const int mod = 998244353;

int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int qpow(int a, int p, int mod)
{
int res = 1;
while (p)
{
if (p & 1)
res = 1ll * res * a % mod;
a = 1ll * a * a % mod;
p >>= 1;
}
return res;
}
int inc(int x, int y, int mo)
{
if (x + y >= mo)
return (x + y - mo);
else
return (x + y);
}

int del(int x, int y, int mo)
{
if (x - y < 0)
return (x - y + mo);
else
return (x - y);
}
const int P = 998244353, gi = 3;
const double pi = acos(-1.0);
int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y, P);
A[i + j + l] = del(x, y, P);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}
int C[N], D[N];
void finv(int *a, int *b, int len)
{
if (len == 1)
{
b[0] = qpow(a[0], mod - 2, mod);
return;
}
//cout << len << endl;
finv(a, b, (len + 1) >> 1);
int ML = 1, bit = 0;
while (ML <= (len << 1))
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
memset(C, 0, sizeof(C));
memset(D, 0, sizeof(D));
//cout << ML << endl;
for (int i = 0; i < len; i++)
C[i] = a[i];
for (int i = 0; i < len; i++)
D[i] = b[i];
NTT(C, ML, 1);
NTT(D, ML, 1);
for (int i = 0; i < ML; i++)
D[i] = 1LL * (2 - 1ll * C[i] * D[i] % mod + mod) % mod * D[i] % mod;
NTT(D, ML, -1);
for (int i = 0; i < len; i++)
b[i] = D[i];
}
int a[N], b[N];
int main()
{
int n = read();
for (int i = 0; i < n; i++)
a[i] = read();
finv(a, b, n);
for (int i = 0; i < n; i++)
printf("%d ", b[i]);
}