P5641 【CSGRound2】开拓者的卓识

求$sum_{k,1,1},sum_{k,1,2}….sum_{k,1,n}$

从上向下拓展的想$[i,i]->[i-a,i+b]->[1,r]$,经过$k-1$步走到了$[1,r]$,考虑走法就是$[1,i]$选$k-1$个$\times[i,r]$选$k-1$个。根据组合知识从$n$个东西里面选$m$个,可重复$={n+m-1\choose n-1},{n+m-1\choose m}$

$NTT$递推预处理下组合数。

代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 1e6 + 10;

const int mod = 998244353;
const int P = 998244353, gi = 3;
const double pi = acos(-1.0);
int inc(int x, int y, int mo)
{
if (x + y >= mo)
return (x + y - mo);
else
return (x + y);
}

int del(int x, int y, int mo)
{
if (x - y < 0)
return (x - y + mo);
else
return (x - y);
}
int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}
int qpow(int a, int x, int mo)
{
int res = 1;
while (x)
{
if (x & 1)
res = 1ll * res * a % mo;
x >>= 1;
a = 1ll * a * a % mo;
}
return res;
}
int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y, P);
A[i + j + l] = del(x, y, P);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}

void NTTX(int *a, int n, int *b, int m, int *ans)
{
int ML = 1, bit = 0;
while (ML < n + m)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
NTT(a, ML, 1);
NTT(b, ML, 1);
for (int i = 0; i < ML; i++)
ans[i] = 1ll * a[i] * b[i] % P;
NTT(ans, ML, -1);
}
int f[N], g[N], a[N], inv[N], c[N];
int main()
{
int n = read(), k = read();
for (int i = 1; i <= n; i++)
a[i] = read();
inv[0] = inv[1] = 1;
for (int i = 2; i <= n; i++)
inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
g[1] = 1;
for (int i = 2; i <= n; i++)
{
g[i] = 1ll * (i + k - 2) % mod * g[i - 1] % mod * inv[i - 1] % mod;
//cout << g[i] << " ";
}

for (int i = 1; i <= n; i++)
g[i] = 1ll * g[i] * a[i] % mod;
g[0] = 0;
f[0] = 1;
for (int i = 1; i <= n; i++)
{
f[i] = 1ll * (i + k - 1) % mod * f[i - 1] % mod * inv[i] % mod;
//cout << i + k - 1 << " " << inv[i] << " " << f[i] << " " << endl;
;
}

NTTX(f, n, g, n, c);
for (int i = 1; i <= n; i++)
printf("%d ", c[i]);
}