CF1334G Substring Search

字符串匹配要没$s_i-t_i=0 \ or p_{s_i}-t_i=0$

构造$\sum_{i=1}^{m} (s_i-t_{i+s-1})^2 (p_{s_i}-t_{s+i-1})^2$

瞎几把展开可以用这个网站

$v^2 x^2 - 2 v^2 x y - 2 v x^2 y + v^2 y^2 + 4 v x y^2 + x^2 y^2 - 2 v y^3 - 2 x y^3 + y^4$

然后卷积$NTT$即可.

  • 防止有傻逼卡$mod$,就让这个字母的值尽量不规律。
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 8e5 + 10;
const int mod = 998244353;
const int P = 998244353, gi = 3;
const double pi = acos(-1.0);
int inc(int x, int y, int mo)
{
if (x + y >= mo)
return (x + y - mo);
else
return (x + y);
}

int del(int x, int y, int mo)
{
if (x - y < 0)
return (x - y + mo);
else
return (x - y);
}
int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int qpow(int a, int x, int mo)
{
int res = 1;
while (x)
{
if (x & 1)
res = 1ll * res * a % mo;
x >>= 1;
a = 1ll * a * a % mo;
}
return res;
}
int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y, P);
A[i + j + l] = del(x, y, P);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}

// void NTTX(int *a, int n, int *b, int m, int *ans)
// {
// int ML = 1, bit = 0;
// while (ML < n + m)
// ML <<= 1, bit++;
// for (int i = 0; i < ML; i++)
// rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
// NTT(a, ML, 1);
// NTT(b, ML, 1);
// for (int i = 0; i < ML; i++)
// ans[i] = 1ll * a[i] * b[i] % P;
// NTT(ans, ML, -1);
// }
//v^2 x^2 - 2 v^2 x y - 2 v x^2 y + v^2 y^2 + 4 v x y^2 + x^2 y^2 - 2 v y^3 - 2 x y^3 + y^4
int c[N], b[5][N], a[5][N];
int val[N], p[N], vis[N];
char s[N], t[N];
int main()
{
//cout << 2333 << endl;
for (int i = 1; i <= 26; i++)
cin >> p[i];
//cout << 2333 << endl;
for (int i = 1; i <= 26; i++)
{
// int p = rand() % 100 + 1;
// while (vis[p] == 1)
// {
// p = rand() % 100 + 1;
// }
val[i] = i * i;
//vis[p] = 1;
}

scanf("%s", t + 1);
scanf("%s", s + 1);
int n = strlen(s + 1);
int m = strlen(t + 1);
//cout << 2333 << endl;
for (int i = 1; i <= m; i++)
{
int id = t[i] - 'a' + 1;
int x = val[id], v = val[p[id]];
a[0][i] = 1ll * v * v * x * x % mod;
a[1][i] = (mod - 2 * v * v * x - 2 * v * x * x) % mod;
a[2][i] = (v * v + 4 * v * x + x * x) % mod;
a[3][i] = (mod - 2 * x - 2 * v) % mod;
a[4][i] = 1;
}
for (int i = 1; i <= n; i++)
{
int id = s[i] - 'a' + 1;
int y = val[id];
b[0][i] = 1;
b[1][i] = y;
b[2][i] = y * y;
b[3][i] = 1ll * y * y * y % mod;
b[4][i] = 1ll * y * y * y * y % mod;
}

int ML = 1, bit = 0;
while (ML < n + m)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
for (int i = 0; i <= 4; i++)
{
reverse(b[i] + 1, b[i] + 1 + n);
NTT(b[i], ML, 1);
NTT(a[i], ML, 1);
for (int j = 0; j < ML; j++)
c[j] = (c[j] + 1ll * a[i][j] * b[i][j] % mod) % mod;
}
NTT(c, ML, -1);
for (int s = 1; s <= n - m + 1; s++)
if (c[n - s + 2] == 0)
printf("1");
else
printf("0");
}