CF954I Yet Another String Matching Problem

给定两个字符串𝑆,𝑇

求𝑆所有长度为|𝑇|子串与𝑇的距离

两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数。

$|𝑇|\leq|𝑆|\leq 10^6$,字符集大小为6

$abac$与$aacb$,其实只$a-b,c-a,b-c$,对于一个联通块只需要改$size-1$即可,字符集只有$6$,只用维护$6\times 6$,是否在匹配时有$ab,ac$这样子。用并差集维护即可。

代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 5e5 + 10;
const int mod = 1e9 + 7;
const int P = 998244353, gi = 3;
const double pi = acos(-1.0);
int inc(int x, int y, int mo)
{
if (x + y >= mo)
return (x + y - mo);
else
return (x + y);
}

int del(int x, int y, int mo)
{
if (x - y < 0)
return (x - y + mo);
else
return (x - y);
}
int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int qpow(int a, int x, int mo)
{
int res = 1;
while (x)
{
if (x & 1)
res = 1ll * res * a % mo;
x >>= 1;
a = 1ll * a * a % mo;
}
return res;
}
int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y, P);
A[i + j + l] = del(x, y, P);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}

void NTTX(int *a, int n, int *b, int m)
{
int ML = 1, bit = 0;
while (ML < n + m)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
NTT(a, ML, 1);
NTT(b, ML, 1);
for (int i = 0; i < ML; i++)
a[i] = 1ll * a[i] * b[i] % P;
NTT(a, ML, -1);
}
int slen, tlen;
int fa[N][6];
int f[N], g[N];
char s[N], t[N];
int ans[N];
int find(int p, int x)
{
if (fa[p][x] != x)
return fa[p][x] = find(p, fa[p][x]);
return x;
}
void solve(int x, int y)
{

memset(f, 0, sizeof(f));
memset(g, 0, sizeof(g));
for (int i = 1; i <= slen; i++)
f[i] = (s[i] - 'a') == x;
for (int i = 1; i <= tlen; i++)
g[i] = (t[i] - 'a') == y;
reverse(f + 1, f + slen + 1);

NTTX(f, slen, g, tlen);
for (int p = 1; p <= slen - tlen + 1; p++)
{
if (f[slen - p + 2] > 0)
{

int xx = find(p, x);
int yy = find(p, y);
if (xx != yy)
fa[p][xx] = yy, ans[p]++;
}
}
}
int main()
{
scanf("%s", s + 1);
scanf("%s", t + 1);
slen = strlen(s + 1);
tlen = strlen(t + 1);
for (int i = 1; i < N; i++)
for (int j = 0; j < 6; j++)
fa[i][j] = j;
for (int i = 0; i < 6; i++)
for (int j = 0; j < 6; j++)
if (i != j)
solve(i, j);
for (int p = 1; p <= slen - tlen + 1; p++)
printf("%d ", ans[p]);
}