CF438E - The Child and Binary Tree

给某些权值的结点,可以无限使用。$f(x)$为总权值为$x$的二叉树的种类数,询问$f(1)…f(m)$

只有权值$1$的时候,即卡特兰数,考虑生成函数推导。

$g(i)$表示是否有$i$这个权值。

观察为三个卷积形式。注意边界$g(0)=0,f(0)=1$

带入$0$值可知取负号=$\frac{0}{0}$

带入板子即可。

代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 1e6 + 10;

const int P = 998244353, gi = 3;
const double pi = acos(-1.0);
int inc(int x, int y, int mo)
{
if (x + y >= mo)
return (x + y - mo);
else
return (x + y);
}

int del(int x, int y, int mo)
{
if (x - y < 0)
return (x - y + mo);
else
return (x - y);
}
int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int qpow(int a, int x, int mo)
{
int res = 1;
while (x)
{
if (x & 1)
res = 1ll * res * a % mo;
x >>= 1;
a = 1ll * a * a % mo;
}
return res;
}
int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y, P);
A[i + j + l] = del(x, y, P);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}
void NTTX(int *a, int n, int *b, int m)
{
int ML = 1, bit = 0;
while (ML < n + m)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
NTT(a, ML, 1);
NTT(b, ML, 1);
for (int i = 0; i < ML; i++)
a[i] = 1ll * a[i] * b[i] % P;
NTT(a, ML, -1);
}
int Inv2;
int C[N], D[N];

void Finv(int *a, int *b, int n)
{
b[0] = qpow(a[0], P - 2, P);
int len, ML;
int bit = 0;

for (len = 1; len < (n << 1); len <<= 1)
{
ML = len << 1;
bit++;
for (int i = 0; i < len; i++)
C[i] = a[i], D[i] = b[i];
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
NTT(C, ML, 1), NTT(D, ML, 1);
for (int i = 0; i < ML; i++)
b[i] = ((2ll - 1ll * C[i] * D[i] % P) * D[i] % P + P) % P;
NTT(b, ML, -1);
for (int i = len; i < ML; i++)
b[i] = 0;
}
for (int i = 0; i < len; i++)
C[i] = D[i] = 0;
for (int i = n; i < len; i++)
b[i] = 0;
}
int E[N], F[N];
void Sqrt(int *a, int *b, int n)
{
Inv2 = qpow(2, P - 2, P);
b[0] = 1;
int bit = 0;
int len;

for (len = 1; len < (n << 1); len <<= 1)
{
int ML = len << 1;
bit++;
for (int i = 0; i < len; i++)
E[i] = a[i];
Finv(b, F, len);
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
NTT(E, ML, 1), NTT(F, ML, 1);
for (int i = 0; i < ML; i++)
E[i] = 1ll * E[i] * F[i] % P;
NTT(E, ML, -1);
for (int i = 0; i < len; i++)
b[i] = 1LL * (b[i] + E[i]) % P * Inv2 % P;
for (int i = len; i < ML; i++)
b[i] = 0;
}
for (int i = 0; i < len; i++)
E[i] = F[i] = 0;
for (int i = n; i < len; i++)
b[i] = 0;
}

// int aa[N], ia[N]; // aa 表示a的导数,ia表示a的逆
// void Ln(int *a, int *res, int n)
// {
// for (int i = 0; i < n << 1; i++)
// aa[i] = ia[i] = 0;
// for (int i = 1; i < n; i++)
// aa[i - 1] = 1ll * i * a[i] % P;
// Finv(a, ia, n);
// NTTX(aa, n, ia, n);
// res[1] = 0;
// for (int i = 1; i < n; i++)
// res[i] = 1ll * aa[i - 1] * qpow(i, P - 2, P) % P;
// }
// int G[N], H[N], M[N];
// void EXP(int *a, int *b, int n)
// {
// Inv2 = qpow(2, P - 2, P);
// b[0] = 1;
// int bit = 0;
// int len;

// for (len = 1; len < (n << 1); len <<= 1)
// {
// int ML = len << 1;
// bit++;
// for (int i = 0; i < len << 1; i++)
// H[i] = G[i] = M[i] = 0;
// for (int i = 0; i < len; i++)
// H[i] = a[i];
// for (int i = 0; i < len; i++)
// G[i] = b[i];
// Ln(G, M, len); // M(x)=lin(G)
// for (int i = 0; i < ML; i++)
// rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
// NTT(G, ML, 1), NTT(H, ML, 1), NTT(M, ML, 1);
// for (int i = 0; i < ML; i++)
// b[i] = 1LL * G[i] * (1ll - M[i] + H[i] + P) % P;
// NTT(b, ML, -1);
// for (int i = len; i < ML; i++)
// b[i] = 0;
// }
// for (int i = 0; i < len; i++)
// G[i] = H[i] = M[i] = 0;
// for (int i = n; i < len; i++)
// b[i] = 0;
// }
int f[N], g[N], sg[N];
int main()
{
int n = read(), m = read();
for (int i = 1; i <= n; i++)
{
int x = read();
g[x] = 1;
}
for (int i = 1; i <= m; i++)
g[i] = (-4ll * g[i] + P) % P;
g[0] = 1;
Sqrt(g, sg, m + 1);
sg[0] = inc(sg[0], 1, P);
Finv(sg, f, m + 1);
for (int i = 1; i <= m; i++)
f[i] = 2ll * f[i] % P;
for (int i = 1; i <= m; i++)
printf("%d\n", f[i]);
}