2019ICPC南京网络赛C. Tsy's number 5

把$i,j$分开

$\phi(i)$显然可以计数。$f[i]=\sum[\phi(k)=i]$

$h(x)= f(x)x2^{-x^2},g(x)=(\sqrt{2})^{(x)^2}$

其实这步已经可以卷了。进一步化简$i+j=t$

代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 4e5 + 10;

const int mod = 998244353;
const int e2 = 116195171;
int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int inc(int x, int y) { return (x + y >= mod) ? (x + y - mod) : (x + y); }
int del(int x, int y) { return (x - y < 0) ? (x - y + mod) : (x - y); }
const int P = 998244353;
const int gi = 3;
int qpow(int a, ll x, int mo)
{
int res = 1;
while (x)
{
if (x & 1)
res = 1ll * res * a % mo;
a = 1ll * a * a % mo;
x >>= 1;
}
return res;
}

int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y);
A[i + j + l] = del(x, y);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}
int initNTT(int n, int m)
{
int ML = 1, bit = 0;
while (ML < n + m)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
return ML;
}
void NTTX(int *a, int n, int *b, int m)
{
int ML = initNTT(n, m);
NTT(a, ML, 1);
NTT(b, ML, 1);
for (int i = 0; i < ML; i++)
a[i] = 1ll * a[i] * b[i] % P;
NTT(a, ML, -1);
}
int pcnt, pr[N], npr[N], phi[N];

void Prime_init(int X)
{
npr[1] = 1;
phi[1] = 1;
for (int i = 2; i <= X; i++)
{
if (!npr[i])
pr[++pcnt] = i, phi[i] = i - 1;
for (int j = 1; j <= pcnt && pr[j] * i <= X; j++)
{
npr[pr[j] * i] = 1;

if (i % pr[j] == 0)
{
phi[i * pr[j]] = phi[i] * pr[j];
break;
}
else
{
phi[i * pr[j]] = phi[i] * phi[pr[j]];
}
}
}
}
int n, k;
int f[N], g[N], a[N], b[N], e2p[N];
int main()
{
int T = read();
Prime_init(1e5 + 10);
while (T--)
{
memset(b, 0, sizeof(b));
memset(f, 0, sizeof(f));
memset(g, 0, sizeof(g));
memset(a, 0, sizeof(a));
int n = read();

for (int i = 1; i <= n; i++)
b[phi[i]]++;
for (int i = 0; i <= n; i++)
e2p[i] = qpow(e2, 1ll * i * i, mod);
for (int i = 0; i <= 2 * n; i++)
f[i] = qpow(e2, 1ll * i * i, mod);
for (int i = 1; i <= n; i++)
{
g[i] = a[i] = 1ll * b[i] * i % mod * qpow(e2p[i], mod - 2, mod) % mod;
}
// reverse(g, g + 1 + n);
NTTX(g, n + 1, a, n + 1);
//reverse(g, g + 1 + n);
// int duo = 0;
// for (int i = 1; i <= n; i++)
// duo = inc(duo, 1ll * i * i % mod * b[i] % mod * b[i] % mod * qpow(2, 1ll * i * i, mod) % mod);

int res = 0;
for (int i = 1; i <= 2 * n; i++)
{

res = inc(res, 1ll * f[i] * g[i] % mod);
}

printf("%d\n", res);
}
}