P4491 [HAOI2018]染色

只关心序列的 $N$ 个位置中出现次数恰好为 $S$的颜色种数, 如果恰 好出现了 $S$ 次的颜色有 $K$ 种, 则小 C 会产生 $W_k$ 的愉悦度.
求所有情况总和。

简单证明:

只需要证明:

此题解法

观察$g[k]$保证,

对于$f(k+1),g[k]$显然记录了$C(k+1,k)次$

类似于

  • 注意显然需要计算的只是$min(m,n/s)$
    代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 4e5 + 10;
const int M = 1e7 + 10;
const int mod = 1004535809;

int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int inc(int x, int y) { return (x + y >= mod) ? (x + y - mod) : (x + y); }
int del(int x, int y) { return (x - y < 0) ? (x - y + mod) : (x - y); }
const int P = 1004535809;
const int gi = 3;
int qpow(int a, int x, int mo)
{
int res = 1;
while (x)
{
if (x & 1)
res = 1ll * res * a % mo;
a = 1ll * a * a % mo;
x >>= 1;
}
return res;
}

int fac[M], facinv[M];
void prepare()
{
fac[0] = 1;
facinv[0] = 1;
for (int i = 1; i < M; i++)
fac[i] = 1ll * fac[i - 1] * i % mod;
facinv[M - 1] = qpow(fac[M - 1], mod - 2, mod);
for (int i = M - 2; i >= 1; i--)
facinv[i] = 1ll * facinv[i + 1] * (i + 1) % mod;
}
int C(int n, int i)
{
if (n <= 0)
return 0;
if (i > n)
return 0;
if (i == 0)
return 1;
return 1ll * fac[n] * facinv[i] % mod * facinv[n - i] % mod;
}
int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y);
A[i + j + l] = del(x, y);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}
int initNTT(int n, int m)
{
int ML = 1, bit = 0;
while (ML < n + m)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
return ML;
}
void NTTX(int *a, int n, int *b, int m)
{
int ML = initNTT(n, m);
NTT(a, ML, 1);
NTT(b, ML, 1);
for (int i = 0; i < ML; i++)
a[i] = 1ll * a[i] * b[i] % P;
NTT(a, ML, -1);
}

int n, k;
int f[N], g[N];
int main()
{
prepare();
int n = read(), m = read(), S = read();
int lim = min(m, n / S);

for (int i = 0; i <= lim; i++)
{
f[i] = 1ll * C(m, i) * fac[n] % mod * facinv[n - S * i] % mod * qpow(facinv[S], i, mod) % mod * qpow(m - i, n - S * i, mod) % mod;

f[i] = 1ll * f[i] * fac[i] % mod;

g[i] = (i & 1) ? mod - facinv[i] : facinv[i];
}

reverse(f, f + lim + 1);
NTTX(f, lim + 1, g, lim + 1);
reverse(f, f + lim + 1);
int ans = 0;
for (int i = 0, w; i <= lim; i++)
{
scanf("%d", &w);

ans = inc(ans, 1ll * f[i] * facinv[i] % mod * w % mod);
}
printf("%d", ans);
}

</details>