2020 CCPC网络赛 1013.Residual Polynomial

$设t^{y}f(x)$表示$f(x)$求导$y$次。

由此构造得到$f_n(x)=f_1(x)(b_1t+c_1)….(b_it+c_i)$

可以得到$t^{y}f(x)$的系数就是后面这个,假设$t^yf(x)$的系数为$z_i$。

我们知道最后$x_i$的系数其实就是$ans_i=z_0a_i+z_1(i+1)a_{i+1}+z_2(i+2)(i+1)a_{2+1}…,ans_i\times(i)!=\sum_{j=0}^n z_jg_{j+i}$

$g_i=a_i\times(i)!$

上面就是卷积套路,翻转一下变成一般形式,就可以$NTT$了。

$HDU,G++(2900ms)$飘过,如果更快,特盘特殊点。

代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 6e5 + 10;

const int mod = 998244353;
// const double pi = acos(-1.0);

const int P = 998244353, gi = 3;
int inc(int x, int y) { return (x + y >= mod) ? (x + y - mod) : (x + y); }
int del(int x, int y) { return (x - y < 0) ? (x - y + mod) : (x - y); }
int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int qpow(int a, int x, int mo)
{
int res = 1;
while (x)
{
if (x & 1)
res = 1ll * res * a % mo;
x >>= 1;
a = 1ll * a * a % mo;
}
return res;
}

int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y);
A[i + j + l] = del(x, y);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}

int Inv2;
int C[N], D[N];
int Ployinit(int n, int m)
{
int ML = 1, bit = 0;
while (ML < n + m - 1)
ML <<= 1, bit++;
return ML;
}
void NTTX(int *a, int n, int *b, int m)
{
int ML = 1, bit = 0;
while (ML < n + m - 1)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
NTT(a, ML, 1);
NTT(b, ML, 1);
for (int i = 0; i < ML; i++)
a[i] = 1ll * a[i] * b[i] % P;
NTT(a, ML, -1);
}
int fac[N];
int ifac[N];

vector<int> g[N];

int p1[N], p2[N];
int solve(int l, int r)
{
if (l == r)
{
return l;
}
int mid = (l + r) >> 1;
int pa = solve(l, mid);
int pb = solve(mid + 1, r);
int len1 = g[pa].size();
int len2 = g[pb].size();
int ML = Ployinit(len1, len2);
for (int i = 0; i < ML; i++)
p1[i] = p2[i] = 0;
for (int i = 0; i < len1; i++)
p1[i] = g[pa][i];
for (int i = 0; i < len2; i++)
p2[i] = g[pb][i];

NTTX(p1, len1, p2, len2);

g[pa].clear();
int li = len1 + len2 - 1;

for (int i = 0; i < li; i++)
g[pa].push_back(p1[i]);
return pa;
}

int c[N], b[N], a[N];
int f[N];
int main()
{
int T = read();
while (T--)
{
int n = read();
fac[0] = 1;
for (int i = 1; i <= n; ++i)
fac[i] = 1ll * fac[i - 1] * i % mod;
ifac[n] = qpow(fac[n], mod - 2, mod);
for (int i = n; i; --i)
ifac[i - 1] = 1ll * ifac[i] * i % mod;
memset(a, 0, sizeof(a));
memset(f, 0, sizeof(f));
memset(b, 0, sizeof(b));
memset(c, 0, sizeof(c));
for (int i = 0; i <= n; i++)
a[i] = read();
for (int i = 0; i <= n; i++)
a[i] = 1ll * a[i] * fac[i] % mod;
for (int i = 2; i <= n; i++)
b[i] = read();
for (int i = 2; i <= n; i++)
c[i] = read();

for (int i = 2; i <= n; i++)
{
g[i].clear();
g[i].push_back(c[i]), g[i].push_back(b[i]);
}
int o = solve(2, n);
reverse(g[o].begin(), g[o].end());
int flen = g[o].size();

for (int i = 0; i < g[o].size(); i++)
f[i] = g[o][i];
NTTX(f, flen, a, n + 1);
for (int i = 0; i < n; ++i)
printf("%lld ", (1ll * f[i + n - 1] * ifac[i]) % mod);
printf("%lld\n", (1ll * f[n + n - 1] * ifac[n]) % mod);
}
}