P4721 【模板】分治 FFT

给定序列$g_{1\dots n - 1}$,求序列 $f_{0\dots n - 1}$。

其中 $f_i=\sum_{j=1}^if_{i-j}g_jf_i$
​边界为 $f_0=1$ 。

答案对$998244353$ 取模。

方法一

$f=f\times g+1,f=(1-g)^{-1}$

方法二

样例

3 1 2

$f_0$会对所有产生贡献,以此类推

1 3 1 2

1 3 1+9 2+3

1 3 10 5+30

假设我们现在已经做完了$[𝑙,𝑚𝑖𝑑]$,考虑对右边的影响。

$f(i)=\sum_{j=l}^{mid}f(j)g(i-j)$
那么我们可以把$𝑓$的$[𝑙,𝑚𝑖𝑑]$项拿出来,其他项置$0$,在把这个和$𝑔$的$[0,𝑟−𝑙]$卷起来就可以得到影响,然后加上去就好了。

  • 为了避免每次分治$n\log n$
  • $A[i - l] = f[i]$,最后得到$f[i]+=C[i-l]$
分治做法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 1e6 + 10;
const int mod = 998244353;

int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}

int qpow(int a, int p, int mod)
{
int res = 1;
while (p)
{
if (p & 1)
res = 1ll * res * a % mod;
a = 1ll * a * a % mod;
p >>= 1;
}
return res;
}
int inc(int x, int y, int mo)
{
if (x + y >= mo)
return (x + y - mo);
else
return (x + y);
}

int del(int x, int y, int mo)
{
if (x - y < 0)
return (x - y + mo);
else
return (x - y);
}

const int P = 998244353, gi = 3;
const double pi = acos(-1.0);
int rev[N];
void NTT(int *A, int n, int inv)
{
for (int i = 0; i < n; i++)
if (i < rev[i])
swap(A[i], A[rev[i]]);
for (int l = 1; l < n; l <<= 1)
{
int tt = qpow(gi, (P - 1) / (l << 1), P);
int temp = (inv == 1 ? tt : qpow(tt, P - 2, P));
for (int i = 0; i < n; i += (l << 1))
{
int omega = 1;
for (int j = 0; j < l; j++, omega = 1ll * omega * temp % P)
{
int x = A[i + j], y = 1ll * omega * A[i + j + l] % P;
A[i + j] = inc(x, y, P);
A[i + j + l] = del(x, y, P);
}
}
}
int invv = qpow(n, P - 2, P);
if (inv == -1)
for (int i = 0; i < n; i++)
A[i] = 1ll * A[i] * invv % P;
}
int NTTinit(int n, int m)
{
int ML = 1, bit = 0;
while (ML < n + m)
ML <<= 1, bit++;
for (int i = 0; i < ML; i++)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
return ML;
}
void NTTX(int *a, int n, int *b, int m, int *ans)
{
int ML = NTTinit(n, m);
NTT(a, ML, 1);
NTT(b, ML, 1);
for (int i = 0; i < ML; i++)
ans[i] = 1ll * a[i] * b[i] % P;
NTT(ans, ML, -1);
}

int A[N], B[N], C[N];

void CDQNTT(int *f, int *g, int l, int r)
{
if (l == r)
return;
int mid = (l + r) >> 1;
CDQNTT(f, g, l, mid);
int ML = NTTinit(r - l + 1, r - l + 1);
for (int i = 0; i < ML; i++)
A[i] = B[i] = C[i] = 0;
for (int i = l; i <= mid; ++i)
A[i - l] = f[i];
for (int i = 0; i <= r - l; ++i)
B[i] = g[i];
NTTX(A, r - l + 1, B, r - l + 1, C);
for (int i = mid + 1; i <= r; ++i)
f[i] = inc(f[i], C[i - l], mod);
CDQNTT(f, g, mid + 1, r);
}
int f[N], g[N];
int main()
{
int n = read();
for (int i = 1; i < n; i++)
g[i] = read();
f[0] = 1;
CDQNTT(f, g, 0, n);
for (int i = 0; i < n; i++)
printf("%d ", f[i]);
}