子集卷积

$O(3^n)$就是简单枚举子集。

设$p[i]=i的二进制个数$,

想成一个矩阵,也就是$c_{p(m)}$也就是$a_{p(i)},b_{p(j)}$这两行$FWT$或一下。然后我们枚举行即可。复杂度$O(n^22^n)$

P6097 【模板】子集卷积
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mk make_pair
const int N = 1 << 20;
const int M = 1e5 + 10;
const int mod = 1e9 + 9;
int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
x = (x << 1) + (x << 3) + c - '0', c = getchar();
return x * f;
}
int qpow(int a, int x, int mo)
{
int res = 1;
while (x)
{
if (x & 1)
res = 1ll * res * a % mo;
x >>= 1;
a = 1ll * a * a % mo;
}
return res;
}
int inc(int x, int y, int mo)
{
if (y < 0)
y += mo;
if (x + y >= mo)
x -= mo;
return x + y;
}
int Inv2;
void FWT(int *A, int n, int op, int t) //t=1 or t=2 and t=3 xor
{
for (int i = 2; i <= n; i <<= 1)
{
for (int j = 0, mid = i >> 1; j < n; j += i)
for (int k = 0; k < mid; k++)
{

if (t == 1)
A[j + mid + k] = inc(A[j + mid + k], A[j + k] * op, mod);
else if (t == 2)
A[j + k] = inc(A[j + k], A[j + mid + k] * op, mod);
else if (t == 3)
{
int x = A[j + k], y = A[j + mid + k];
if (op == 1)
A[j + k] = (x + y) % mod, A[j + mid + k] = (x - y + mod) % mod;
else
A[j + k] = 1ll * Inv2 * (x + y) % mod, A[j + mid + k] = 1ll * Inv2 * (x - y + mod) % mod;
}
}
}
}

int f[21][N], g[21][N];
int res[21][N];

int main()
{
int n = read();
int M = 1 << n;
for (int i = 0; i < M; i++)
f[__builtin_popcount(i)][i] = read();
for (int i = 0; i < M; i++)
g[__builtin_popcount(i)][i] = read();
for (int i = 0; i <= n; i++)
FWT(f[i], M, 1, 1), FWT(g[i], M, 1, 1);

for (int x = 0; x <= n; x++)
{
for (int i = 0; i <= x; i++)
for (int j = 0; j < M; j++)
res[x][j] = inc(res[x][j], 1ll * f[i][j] * g[x - i][j] % mod, mod);
FWT(res[x], M, -1, 1);
}
for (int i = 0; i < M; i++)
printf("%d ", res[__builtin_popcount(i)][i]);
}